DOC316.53.01323

USEPA electrode method

Method 10257

pH meter

Scope and application: For water, wastewater, brine solutions, produced waters and hydraulic fracturing waters¹.

1 Adapted from Standard Method 4500-H+B, ASTM Method D1293-84(90)/(A or B) and USEPA Method 150.

Test preparation

Instrument-specific information

This procedure is applicable to the meters and probes that are shown in Table 1. Procedures for other meters and probes can be different.

Table 1 Instrument-specific information

Meter	Standard probe	Rugged probe
HQ1110, HQ2100, HQ2200, HQ4100, HQ4200, HQ4300	Gel: PHC101	PHC10105, PHC10110, PHC10115,
HQ40d, HQ30d or HQ11d	Liquid: PHC301	PHC10130

Before starting

Refer to the meter documentation for meter settings and operation. Refer to probe documentation for probe preparation, maintenance and storage information.

Prepare the probe before initial use. Refer to probe documentation.

When an Intellical probe is connected to an HQ meter or an HQd meter, the meter automatically identifies the measurement parameter and is prepared for use.

Condition the electrode for the best response time. To condition the electrode, soak the electrode for several minutes in a solution that has almost the same pH and ionic strength as the sample.

Calibrate the probe before initial use. Refer to Calibration procedure on page 3.

For rugged electrodes, it may be necessary to remove the shroud before measurement and calibration.

Air bubbles under the sensor tip can cause slow response or measurement errors. To remove the bubbles, carefully shake the probe.

To save data automatically, set the measurement mode to Press to Read or Interval. When the measurement mode is Continuous, select Store to save data manually.

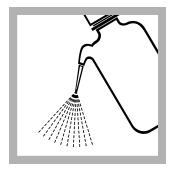
Rinse the electrode between measurements to prevent contamination.

Keep the electrode in a pH storage solution when not in use. Refer to the probe documentation.

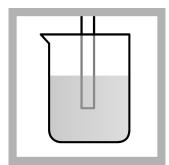
Review the Safety Data Sheets (MSDS/SDS) for the chemicals that are used. Use the recommended personal protective equipment.

Dispose of reacted solutions according to local, state and federal regulations. Refer to the Safety Data Sheets for disposal information for unused reagents. Refer to the environmental, health and safety staff for your facility and/or local regulatory agencies for further disposal information.

This procedure is specified for the HQ meters and HQd meters. The Sension+ meters can be used, but the menus and navigation will be different.


Items to collect

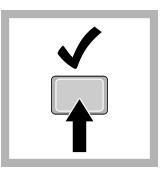
Description	Quantity
Beaker or sample containers	3
Wash bottle with deionized water	1
pH buffers (4.0, 7.0, 10.0)	3


Sample collection

- Analyze the samples immediately. The samples cannot be preserved for later analysis.
- · Collect samples in clean glass or plastic bottles.

Test procedure

1. Rinse the probe with deionized water. Dry the probe with a lint-free cloth.

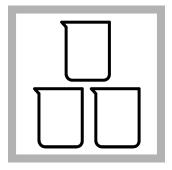

probe in a beaker that contains the solution. Do not let the probe touch the stir bar, bottom or sides of the container. Remove the air bubbles from under the probe tip. Stir the sample at a slow to moderate rate.

Field test: Put the probe in

2. Laboratory test: Put the

the sample. Move the probe up and down to remove bubbles from the electrode.

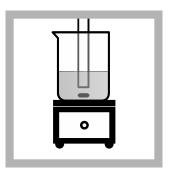
Make sure to put the temperature sensor fully in the sample.

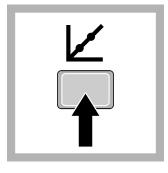


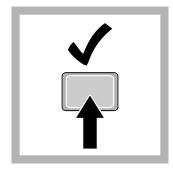
3. Push **Read**. A progress bar is shown. When the measurement is stable, the lock icon is shown.

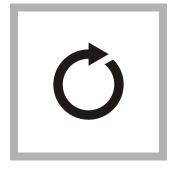
4. Rinse the probe with deionized water. Dry the probe with a lint-free cloth.

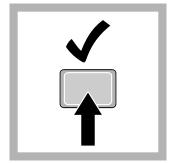
Calibration procedure

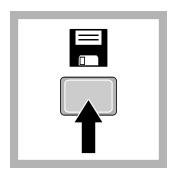

1. Prepare two or three fresh buffer solutions in separate beakers. If two buffers are used, use a 7.0 and a 4.0 or a 7.0 and a 10.0 pH buffer solution.


2. Add a stir bar and put the beaker on a magnetic stirrer. Stir at a moderate rate.


3. Rinse the probe with deionized water. Dry the probe with a lint-free cloth.


4. Put the probe in the solution. Do not let the probe touch the stir bar, bottom or sides of the container. Remove the air bubbles from under the probe tip.


5. Push **Calibrate**. The standard solution value is shown.


6. Push **Read**. A progress bar is shown. When the measurement is stable, the lock icon is shown.

7. Measure the remaining buffer solutions.

8. Push **Done**. A calibration summary is shown when the minimum number of calibration standards are measured.

9. Push **Store** to accept the calibration.

Interferences

The sodium error is low but increases at pH values that are higher than pH 11. The acid error is negligible. Refer to the electrode or the meter documentation.

Accuracy check

Slope test

The electrode operation is satisfactory when the calibration slope is within the specified range (typically -58 mV (± 3) at 25 °C).

Calibration accuracy

Measure the pH of a fresh buffer solution. A calibration is satisfactory when the measured pH value agrees with the known pH value of the buffer solution.

Clean the probe

Clean the probe regularly to remove contamination and to keep the reference junction open. Symptoms of contamination:

- · Incorrect or irregular readings
- · Slow stabilization times
- Calibration errors
- · Sample material stays on the probe
- 1. Rinse the probe with deionized water. Use warm (35–45 °C (95–113 °F)) deionized water to remove storage solution that dries on the probe. Dry the probe body with a lint-free cloth.
- 2. Rinse or soak the probe for 1 minute in deionized water. Dry the probe body with a lint-free cloth.
- **3.** Soak the probe in pH 4 buffer for 20 minutes.
- **4.** Rinse the probe with deionized water. Dry the probe body with a lint-free cloth.

Table 2 Cleaning solution

Contamination	Cleaning solution	Active component	Soak time
General contamination	Electrode cleaning solution for regular maintenance	KATHON [™] CG, DECONEX [®] 11	12–16 hours
Minerals	Electrode cleaning solution for minerals/inorganic contamination	Phosphoric acid (~10%)	10–15 minutes
Fats, grease and oils	Electrode cleaning solution for fats, oils and grease contamination	KATHON™ CG, TRITON® X	2 hours maximum
Proteins	Electrode cleaning solution for proteins/organic contamination	Pepsin in HCI	3 hours maximum
Wastewater and organic compounds	Electrode cleaning solution, extra strong	Sodium hypochlorite	5–10 minutes

Method performance

The accuracy of the measurements is dependent on many factors that are related with the overall system, which includes the meter, the probe and calibration solutions. Refer to the meter or probe documentation for more information.

Summary of method

A combination pH electrode develops an electrical potential at the glass/liquid interface. At a constant temperature, this potential varies linearly with the pH of the solution.

The pH is a measure of the hydrogen ion activity in a solution and is defined as $-\log_{10}aH +$, where aH+ is the activity of the hydrogen ion. The sample pH can change when carbon dioxide is absorbed from the atmosphere. In water that has a high conductivity, the buffer capacity is typically high and the pH does not change significantly.

Consumables and replacement items

HQ meters and probes

Description	Unit	Item no.
HQ1110 portable one input, pH/ORP meter	each	LEV015.53.1110A
HQ2100 portable one input, multi-parameter meter	each	LEV015.53.2100A
HQ2200 portable two input, multi-parameter meter	each	LEV015.53.2200A

HQ meters and probes (continued)

Description	Unit	Item no.
HQ4100 portable one input, multi-parameter meter	each	LEV015.53.4100A
HQ4200 portable two input, multi-parameter meter	each	LEV015.53.4200A
HQ4300 portable three input, multi-parameter meter	each	LEV015.53.4300A
Intellical pH gel probe, standard with 1 m cable	each	PHC10101
Intellical pH gel probe, standard with 3 m cable	each	PHC10103
Intellical pH liquid probe, standard with 1 m cable	each	PHC30101
Intellical pH liquid probe, standard with 3 m cable	each	PHC30103
Intellical pH gel probe, rugged with 5 m cable	each	PHC10105
Intellical pH gel probe, rugged with 10 m cable	each	PHC10110
Intellical pH gel probe, rugged with 15 m cable	each	PHC10115
Intellical pH gel probe, rugged with 30 m cable	each	PHC10130

Refill solution and storage

Description	Unit	Item no.
pH filling solution ¹ , 3 M KCl, saturated with AgCl	28 mL	2841700
pH electrode storage solution	500 mL	2756549

Recommended standards

Description	Unit	Item no.
pH 4.01 buffer solution, Singlet one-use packets, 20 mL each	20/pkg	2770020
pH 7.00 buffer solution, Singlet one-use packets, 20 mL each	20/pkg	2770120
pH 10.01 buffer solution, Singlet one-use packets, 20 mL each	20/pkg	2770220
pH 4.01 and pH 7.00 buffer solution kit, Singlet one-use packets, 20 mL each	2 x 10/pkg	2769920
pH 7.00 and 10.01 buffer solution kit, Singlet one-use packets, 20 mL each	2 x 10/pkg	2769820
pH color-coded buffer solution kit (NIST), 500 mL, includes:	1	2947600
pH 4.01 ± 0.02 pH buffer (NIST)	500 mL	2283449
pH 7.00 ± 0.02 pH buffer (NIST)	500 mL	2283549
pH 10.01 ± 0.02 pH buffer (NIST)	500 mL	2283649
Powder pillows:		
pH 4.01 ± 0.02 pH buffer powder pillow (NIST)	50/pkg	2226966
pH 7.00 \pm 0.02 pH buffer powder pillow (NIST)	50/pkg	2227066
pH 10.01 ± 0.02 pH buffer powder pillow (NIST)	50/pkg	2227166
Radiometer Analytical (IUPAC Series certified pH standards):		
pH 1.679 ± 0.010 at 25 °C (77 °F)	500 mL	S11M001
pH 4.005 ± 0.010 at 25 °C (77 °F)	500 mL	S11M002
pH 6.865 ± 0.010 at 25 °C (77 °F)	500 mL	S11M003
pH 7.000 ± 0.010 at 25 °C (77 °F)	500 mL	S11M004

¹ Use with the pH liquid probes.

Recommended standards (continued)

Description	Unit	Item no.
pH 9.180 ± 0.010 at 25 °C (77 °F)	500 mL	S11M006
pH 10.012 ± 0.010 at 25 °C (77 °F)	500 mL	S11M007
pH 12.45 ± 0.05 at 25 °C (77 °F)	500 mL	S11M008
pH buffer 1.09, technical	500 mL	S11M009
pH buffer 4.65, technical	500 mL	S11M010
pH buffer 9.23, technical	500 mL	S11M011

Accessories

Description	Unit	Item no.
Beaker, polypropylene, 50 mL, low form	each	108041
Beaker, polypropylene, 100-mL	each	108042
Bottle, wash, 500 mL	each	62011
Stir bar, magnetic, 2.2 x 0.5 cm (7/8 x 3/16 in.)	each	4531500
Stirrer, electromagnetic, 120 VAC, with electrode stand	each	4530001
Stirrer, electromagnetic, 230 VAC, with electrode stand	each	4530002
Sample bottle with screw-top cap, polypropylene, 500-mL	each	2758101
Water, deionized	4 L	27256