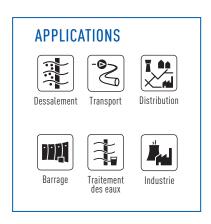


HYDROSTAB AVAL PREMIUM Série K1 11

VANNE DE REGULATION HYDROSTAB AVAL PREMIUM

SERIE K1 11

Basé sur les dernières évolutions du système Hydrobloc, l'Hydrostab aval Premium K1 11 met en avant des matériaux de haute qualité et un design éprouvé afin de garantir à nos clients une durée de vie, une précision et une fonctionnalité exceptionnelles.



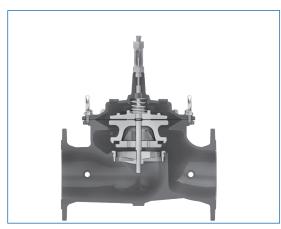
Hydrostab aval Premium série K1 11 est une vanne de régulation automatique permettant la réduction et la stabilisation de la pression aval.

PRINCIPAUX AVANTAGES: PERFORMANCE & DURABILITE

- Robustesse et durabilité avec un circuit pilote intégralement* en acier inoxydable 316. L'équipage mobile interne intégralement en acier inoxydable 316 jusqu'au DN200mm—solution unique sur la marché en standard—induit une résistance et des performances élevées mêmes dans des conditions d'utilisation sévères, telles que forts différentiels de pression amont /aval.
- ∟ Résistance à la corrosion par l'application d'un revêtement de 250µm minimum, et l'utilisation de raccords traversant dans le corps de la vanne.
- Performance de fonctionnement et pérennité par l'usage d'une nouvelle membrane préformée à haute densité EPDM.
- ∟ Précision sur la consigne de pression aval grâce au nouveau pilote 51P et sa membrane à la surface active augmentée
- L Mise en service aisée et maintenance simplifiée: livré avec notice simplifiée et manomètres amont et aval. Le démontage complet du circuit pilote se fait en 3 points via des nouveaux raccords à étanchéité asciàle sans joint.

CONFORMITÉ AUX NORMES:

- NF EN 1074-5.
- Etanchéité catégorie A suivant ISO 5208-2.
- Conforme à la norme EN 12266.
- Dimensions face-à-face NF EN 558-1 et ISO 5752-1.
- Perçage des brides de raccordement suivant EN 1092-2 et ISO 7005-2 ISO PN 10 en standard, ISO PN 16, ISO PN 25 ou autres perçages pour DN 50 à 400 (nous consulter).
- Attestation de Conformité Sanitaire A.C.S.



UTILISATIONS


- Les vannes de régulation peuvent être:
 - Installées à la fois pour des travaux neufs ou pour des installations existantes.
 - Installées en chambre de vanne ou dans des bâtiments, dans tous les cas hors-gel.
- L'utilisation des vannes de régulation **Hydrostab Aval Premium** permet de réduire et stabiliser la pression d'un réseau aval à partir d'une conduite amont à pression plus élevée, quelles que soient les variations de la pression amont et du débit. Ainsi, elles permettent:
 - La réduction et la stabilisation de la pression sur un réseau (régulation et maillage de réseaux étagés).
 - L'alimentation d'un réseau bas service par un réseau haut service.
 - Le secours d'un réseau de plus basse pression alimenté généralement par un autre service.
 - Le by-pass des réservoirs (semi-enterrés ou sur chateau déau).
 - L'équilibre de l'alimentation d'un réseau maillé par plusieurs ressources à pressions plus élevées et différentes.

DONNÉES TECHNIQUES PRINCIPALES

- □ PFA 10, 16 ou 25 bar selon applications
 (PFA 40 bar, nous consulter).
- ∟ DN 40 à 400 à brides normalisées.
- ∟ Etanche à débit nul.
- ☐ Températures d'utilisation de + 0°C à + 65°C.
- ∟ Fluide: eau potable ou eau brute dégrillée à 2mm.
- □ Option kit anti cavitation ACD040 à cylindres à fentes.
- □ Nombreuses options disponibles sur la vanne de base ou sur le dispositif de pilotage (voir page 8-9-10).

Vanne de base XG en coupe

LES AVANTAGES TECHNIQUES DE L'HYDROSTAB AVAL PREMIUM

UNE VANNE DE BASE OPTIMISÉE POUR UN INVESTISSEMENT PÉRENNE:

AUCUN RISQUE DE CORROSION:

Revêtement intégral en époxy à chaud d'une

épaisseur minimum de 250μ.

Profil spécifique des bossages (zones de connexion du circuit pilote): tous les taraudages sont revêtus et protégés.

FACILITÉ DE MAINTENANCE:

L'usage de *goujons* et d'une membrane préformée

facilite les opérations de démontage et remontage.

ÉCONOMIE:

L'équipage mobile complet et le siège en acier inoxydable 316

intégralement* assurent une durabilité et une fiabilité exceptionnelles. L'exploitation des réseaux s'en trouve améliorée et son coût réduit.

FACILITÉ DE MISE EN SERVICE ET DE CONTROLE:

Indicateur de position en acier inoxydable 316 avec verre haute résistance. Purgeur d'air manuel intégré.

Manomètres amont/aval fournis en standard

FACILITÉ D'INSTALLATION:

Anneaux de levage sur tous les diamètres. Encombrement du circuit pilote réduit. Aucune longueur droite en amont ou aval à respecter.

PERFORMANCE ET DURABILITÉ:

Membrane préformée haute densité (procédé de fabrication individuel), naturellement positionnée dans le corps de l'Hydrobloc sans élongation pour une durée de vie et une réactivité accrues. Nouveau design du corps pour des performances d'écoulement supérieures et des pertes de charge

diminuées.

SATISFACTION CLIENT et USAGERS:

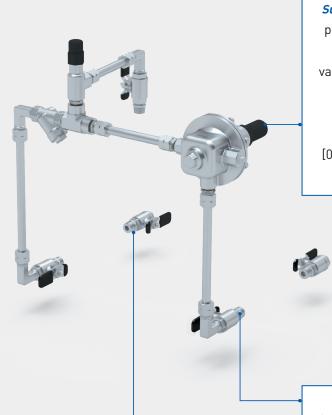
L'utilisation en standard du dispositif SPD "petits débits" assure stabilité et précision de la consigne sur toute la plage de fonctionnement. Les variations de pression intempestives sont impossibles.

LES AVANTAGES TECHNIQUES DE L'HYDROSTAB AVAL PREMIUM

UN CIRCUIT PILOTE OPTIMISÉ POUR UNE DURABILITÉ, UNE PRÉCISION ET UNE FACILITÉ DE MAINTENANCE ACCRUES:

FIABILITÉ ET DURABILITÉ:

Circuit et composants en tout inox 316* pour


une haute résistance aux conditions d'utilisation même les plus extrêmes. Aspect extérieur inaltérable quel que soit

l'environnement.

MAINTENANCE AISÉE: Circuit pilote démontable en 3 points.

Nouveaux raccords
à étanchéité métal/
métal axiale, facilitant le
démontage, le remontage ou
les modifications.

Nouveau ralentisseur d'ouverture sans entretien. Nouveau <u>f</u>iltre à surface de filtration augmentée pour une périodicité d'entretien diminuée.

SENSIBILITÉ ET PRÉCISION:

Nouveau pilote aval 100% acier inoxydable 316.

Surface de membrane active

plus importante pour une meilleure réponse aux variations de pression liées au débit.

Plage de réglage:

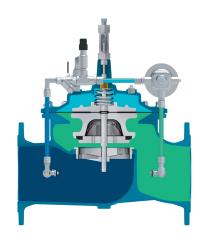
[1-16 bar] en standard [0,3-2 bar], [15-25 bar], ou autres en options

FACILITÉ DE MISE EN SERVICE et de CONTRÔLE :

Nouveaux robinets d'isolement

à commande en acier inoxydable 316 revêtue plastique.

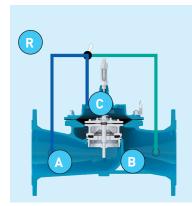
Notice d'installation, de mise en service et d'entretien simplifiée.

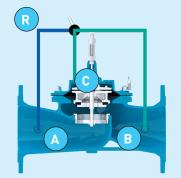

Nouveaux Etanchéité raccords Le nouveau raccord permet : **BAYARD** à -Un découplage latéral plus facile étanchéité axiale pour une maintenance rapide. sans insertion -Une découpe de tube facile en cas de modification à apporter qui ne tient plus compte de Version la longueur à insérer dans le précédente à raccord (Partie). insertion

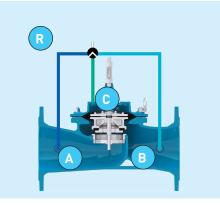
PRINCIPE DE FONCTIONNEMENT GÉNÉRAL

DESCRIPTION

L'Hydrostab Premium aval est constitué:


- D'une VANNE DE BASE constituée d'une zone amont (bleu foncé), d'une zone aval (vert) et d'une chambre de contrôle (bleu clair), isolée de ces dernières par une membrane.
- D'un circuit de commande appelé CIRCUIT PILOTE qui comprend un filtre porte diaphragme, un ralentisseur d'ouverture monté sur un té assurant la liaison à la chambre de contrôle puis un pilote de réduction de pression, communément appelé pilote aval, mesurant la pression à la sortie de la vanne de base.





FONCTIONNEMENT GÉNÉRAL DE LA VANNE DE RÉGULATION HYDROBLOC PREMIUM:

La vanne de régulation est sous le contrôle de son circuit pilote:

FERMETURE

De la zone amont à la chambre:

- Le robinet (R) laisse entrer l'eau dans la chambre (C) qui se remplit grace à la pression amont.
- Les forces qui poussent l'équipage mobile vers le bas sont les plus fortes.

Conclusion: "pour fermer une vanne Hydrobloc Premium, il faut remplir la chambre".

OUVERTURE

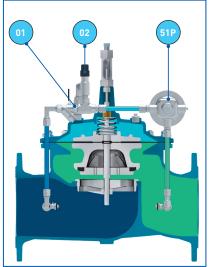
De la chambre à la zone aval:

- Le robinet (R) empéche l'eau d'entrer dans la chambre (C) Il laisse l'eau s'évacuer de la chambre (C) Elle se vide vers la pression aval plus faible (B).
- Les forces qui poussent l'équipage mobile vers le haut sont les plus fortes.

Conclusion: "pour ouvrir une vanne Hydrobloc Premium, il faut vider la chambre".

BLOCAGE

Ou isolement de la chambre:


- Le robinet (R) empéche l'eau d'entrer ou de sortir de la chambre (C) La chambre de manoeuvre est bloquée.
- Les forces ne peuvent donc pas varier.

Conclusion: "pour maintenir en position intermédiaire la vanne Hydrobloc Premium, le volume dans la chambre ne doit pas changer".

PRINCIPE DE FONCTIONNEMENT DU CIRCUIT PILOTE

FONCTIONNEMENT DU CIRCUIT PILOTE AVAL (FIG. 1):

- L'action du ressort du pilote (51P) détermine la valeur de réglage de la pression aval et tend à ouvrir le passage de l'eau dans le pilote.
- La pression aval (zones vertes) s'applique sous la membrane du pilote et l'action du ressort. L'augmentation de la pression aval tend à réduire le passage de l'eau dans le pilote (voir notice T Pilote aval série 51P).
- Zone bleue foncée = pression amont, zone verte = pression aval, zone bleue claire = pression d'équilibre variable entre le diaphragme (01) et le pilote (51P).
- Le ralentisseur d'ouverture RO (02) permet de maîtriser la vidange de la chambre. Le remplissage de la chambre n'est pas réglable pour assurer la sécurité de fermeture de l'appareil et protéger ainsi le réseau aval de tout risque de surpression.

Fia. I

FONCTIONNEMENT DU PILOTE AVAL P51 DANS LE DÉTAIL :

- Le pilote aval se compose principalement (Fig. II) :
 - D'un ressort (01) pour régler la pression de consigne.
 - D'une membrane (02) sous laquelle s'applique la pression à réguler (pression aval).
 - D'un étrier porte clapet (03) en acier inoxydable 316 pour inverser le sens de fonctionnement du clapet.
 - D'un clapet (04) en EPDM.

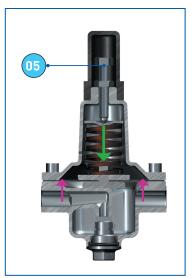


Fig.III

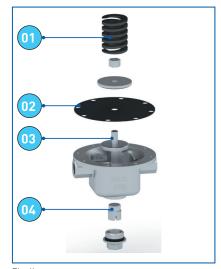


Fig. II

- Le pilote aval 51P est sensible à la pression qui s'applique sous sa membrane, en relation directe avec la sortie de l'appareil (zone de pression aval).
- La compression du ressort par la vis de tarage (05) exerce une force vers le bas (flèche verte) qui, grâce à l'étrier, permet au clapet de descendre et d'ouvrir le passage de l'eau au travers du pilote (Fig.III).
- La pression aval, en s'appliquant sous la membrane, exerce une force vers le haut (flèches violettes), qui contrarie la force du ressort, tend à faire remonter le clapet, et fermer le passage de l'eau au travers du pilote.

Remarque de l'hydraulicien:

Cette conception signifie que le pilote aval est un pilote N.O. (Normalement Ouvert). Seule l'action de la pression aval sous la membrane peut commander la fermeture de cet appareil.

- ∟ Serrer la vis de réglage = augmenter la compression du ressort = augmenter la pression aval.
- ∟ Desserrer la vis de réglage = diminuer la compression du ressort = diminuer la pression aval.

ACCESSOIRES ET OPTIONS

1- DISPOSITIF ANTI-CAVITATION ACD 040

Lorsque la différentielle de pression générée par la réduction de pression souhaitée implique un risque de cavitation (Cf. tableau page 12), le dispositif anti-cavitation ACD 040 (Anti Cavitation Device 0-40 bar) est la solution.

APPLICATIONS

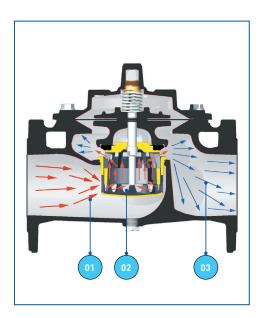
- Réduction de pression.
- Réduction du bruit.
- Remplissage de réservoir.
- By-pass d'une pompe de surpression.
- Décharge avec un rejet direct à l'atmosphère.

D'une manière générale toutes les applications où les vannes sont soumises à des différences de pression extrêmes ou des conditions où la pression aval est faible voire nulle.

∟ FONCTIONS

Les effets de la cavitation sont dévastateurs en particulier lors de l'utilisation d'équipements à faible ouverture ou à des vitesses importantes. Ce dispositif permet d'étendre la plage d'utilisation normale d'une vanne Hydrobloc standard à des régimes de fonctionnement particulièrement sévères et cela sans risque de dommage.

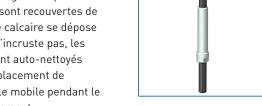
□ PRINCIPE DU DISPOSITIF ACD 040


Le dispositif ACD 040 (Anti-Cavitation Device 0 à 40 bar), breveté BAYARD, représente une avancée dans la maîtrise de la cavitation et des hautes vitesses.

Reprenant le principe d'un double cylindre à fentes, qui a largement fait ses preuves dans nos vannes annulaires, la conception en a été optimisée pour accepter des différences de pression élevées dès les faibles ouvertures, tout en conservant une forte capacité de débit à pleine incendie.

Le principe de ce dispositif est de dissiper l'énergie en 2 phases successives et équilibrées. La majeure partie de la cavitation (60 à 70%) va être dissipée en passant de la zone 1 vers la zone 2, et la cavitation éventuelle est contenue dans la zone 2. La circulation de la zone 2 vers la zone 3 achève de réduire la pression et les fortes vitesses, et cela, quelque soit le pourcentage d'ouverture.

Fort de ces 2 principes, dissipation en cascade et linéarité sur la plage d'ouverture, le dispositif ACD 040 offre des performances remarquables.



2- PRINCIPALES OPTIONS

□ Tige antitartre:

Les parties guide supérieur et inférieur sont recouvertes de Téflon. Le calcaire se dépose mais ne s'incruste pas, les guides sont auto-nettoyés par le déplacement de l'ensemble mobile pendant le fonctionnement.

Mini ventouse montée audessus du témoin de position, elle évacue automatiquement l'air qui peut s'accumuler dans la vanne en cours de fonctionnement et garantit un fonctionnement optimal de l'appareil.

□ Contacteurs secs:

□ Contacteurs analogiques d'ouverture:

Dispose de contacteurs magnétiques et d'un potentiomètre pour indiquer le pourcentage d'ouverture.

Equipement de contrôle avec indicateur de position 4 - 20 mA et contacteurs fin de course 6 - 240 V AC/DC

Commande manuelle:

Permet d'utiliser l'appareil en vanne de sectionnement à commande hydraulique, option intéressante sur les grands DN.

Circuit fonction retour ou antiretour:

Autorise la vanne à s'ouvrir ou se fermer lors de l'inversion du sens d'écoulement.

□ Commande par horodateur programmable:

Sélectionne ou annule une fonction selon la programmation de l'horodateur.

□ Commande par électrovanne:

• 12 V, 24 V, ou 240 V Sélectionne ou annule une fonction selon la programmation de l'horodateur.

L Double filtration:

Facilite les opérations de maintenance des filtres sans rupture du service. Recommandé sur réseau d'eau brute.

Filtration automatique, consultez-nous.

Kit d'aide à l'ouverture:

Système de traction vers le haut de l'équipage mobile, pour faciliter l'ouverture de la vanne de base sans pression.

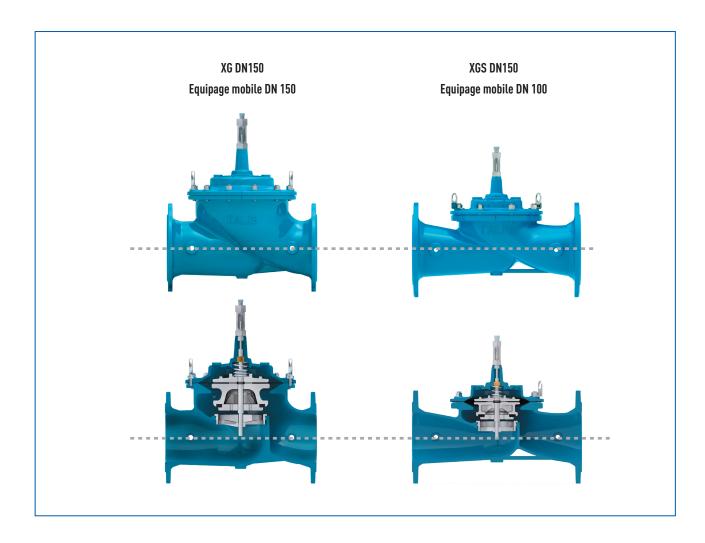
Autres options: (liste non-exhaustive)

Montage vertical ou couché jusqu'au DN 200 XG et 250 XGS:

- Vanne sans indicateur de position.
- Limiteur de course mécanique.

CHOIX DU MODELE ET DIMENSIONNEMENT

Chaque réseau est un cas particulier. Pour qu'une vanne de régulation apporte entière satisfaction et que sa durée de vie soit la plus longue possible, il est impératif de déterminer plusieurs critères :

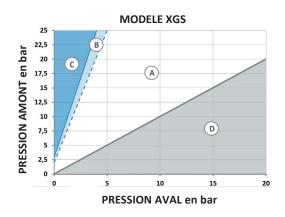

- ∟ Le scénario de vie du réseau qui déterminera le fonctionnement de l'appareil.
- Les conditions de fonctionnement du réseau (débit, pression...).
- ∟ Le modèle et le DN.
- Les options complémentaires.
- Les options spécifiques aux conditions de fonctionnement.

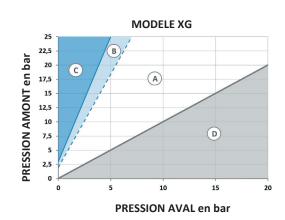
1- CHOIX DE LA VANNE DE BASE

Pour assurer la fonction de réduction de pression, une vanne de base type XGS (passage réduit) est conseillée dans les cas de fonctionnement de réseau où la Δp disponible — c'est-à-dire la différence de pression entre l'amont et l'aval de la vanne de régulation - est supérieure ou égale à 1 bar.

Si la Δp disponible est en permanence inférieure à 1 bar, nous conseillons une vanne de base de type XG (passage intégral). Ce choix est généralement rare dans le cas de la réduction de pression.

Lorsque le débit est faible et que la Δp disponible est supérieure ou égale à 1 bar et devient inférieure à 1 bar quand le débit est fort, nous vous recommandons de contacter le Service Technique Client BAYARD.




LES AVANTAGES DE LA VERSION XGS - PASSAGE RÉDUIT - POUR LA RÉDUCTION DE PRESSION:

- Des performances hydrauliques élevées: les versions XGS offrent des coefficients de débit élevés.
- Une meilleure plage de fonctionnement: un passage réduit génère automatiquement un degré d'ouverture de l'Hydrostab aval Premium plus important à faible débit. Ainsi, la stabilité de l'appareil est donc optimisée et le risque de cavitation réduit.
- Une meilleure précision générée par la stabilité de la vanne.
- l'Hydrostab aval Premium XGS
- Associé au profil spécifique de l'équipage mobile « SPD » (Système Petit Débit)
- les meilleures performances du marché.

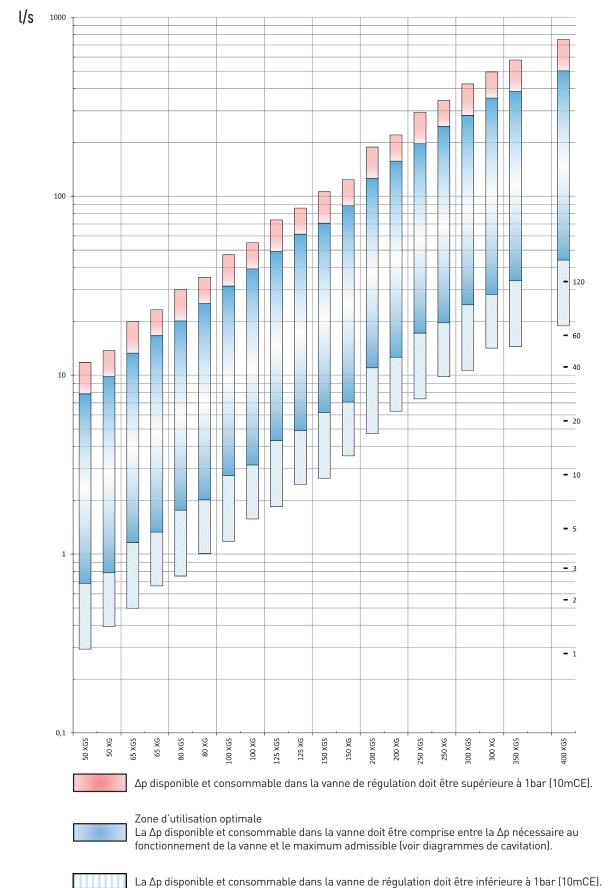
2- CAVITATION:

En fonction de la réduction de pression souhaitée, il convient de s'assurer que l'appareil ne sera pas en zone de cavitation. Pour définir si risque il y a, se référer aux graphiques ci-dessous.

- Zone A: Conditions hors cavitation.
- Zone B: Zone d'utilisation sévère. Prévoir un kit clapet polyuréthane.
- **Zone C:** Zone de cavitation. Prévoir un kit anti cavitation ACD040 ou des appareils en cascade.

 En cas de pression aval inférieure à 1 bar, un dispositif d'entrée d'air peut être envisagé (nous consulter).
- Zone D: Zone impossible, pression amont inférieure à pression aval.

Remarque de l'hydraulicien:


Les dommages potentiels crées par la cavitation dans la vanne de régulation sont préjudiciables à sa durée de vie et de ce fait à la précision de la pression aval contrôlée. L'option dispositif anti-cavitation permet de répondre à cette menace. De plus, ce dispositif ne nécessite l'installation que d'un seul appareil sur le réseau, contrairement aux préconisations de certains fabricants (2 appareils en série). Ceci évite un surcoût matériel, une chambre de vanne plus grande et une maintenance plus complexe.

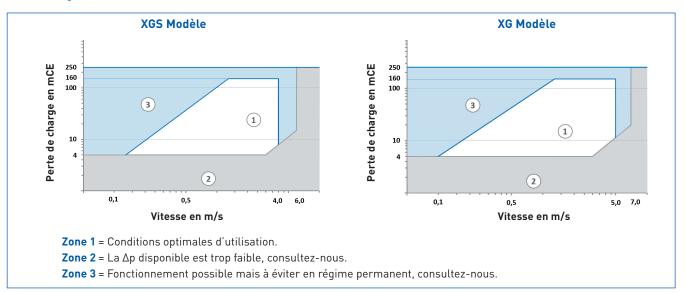
Demander Hydrosize II pour vous assister dans le dimensionnement de l'appareil!

LE SYSTÈME HYDROBLOC ETABLISSEMENT D'UN PROJET PLAGES DE FONCTIONNEMENT

3- VITESSES D'ECOULEMENT:

Le tableau ci-dessous synthétise les coefficients d'écoulement ainsi que les débits sous certaines vitesses. La série Hydrobloc Premium autorise une vitesse exceptionnelle importante pouvant être utilisée pour les débits liés à la défense incendie (zone rouge).

LE SYSTÈME HYDROBLOC PREMIUM ETABLISSEMENT D'UN PROJET PLAGES DE FONCTIONNEMENT

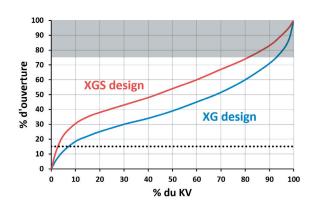


Règle à calculs BAYARD

Choix du modèle et du DN avec la règle à calculs BAYARD:

Le mode d'emploi joint à la règle de calculs BAYARD vous permet de déterminer le régulateur qui convient à l'installation et à ses conditions de fonctionnement.

ullet Les diagrammes ci-dessous, permettent de vérifier si l'appareil fonctionnera dans une zone de fonctionnement optimale, connaissant la Δp . disponible et la vitesse dans la section d'entrée.


Rep	Modèles XGS		Modèle	s XG
DN	Kv	K	Kv	K
50	22	20.3	50	3.9
65	52	10.3	91	3.4
80	90	7.9	126	4.0
100	135	8.6	178	5.0
125	189	10.7	283	4.8
150	196	20.6	417	4.6
200	456	12.1	670	5.6
250	605	16.7	1223	4.1
300	1266	7.9	1472	5.9
350	1389	12.2	-	-
400	1441	19.3	-	-

Rappels:

- La perte de charge dans la vanne Hydrobloc est sa force motrice.
- Le modèle XGS possède une section de passage réduite par rapport à la section d'entrée.

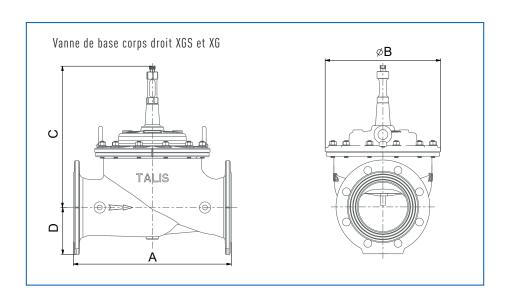
LES CONDITIONS DE FONCTIONNEMENT

- Le dimensionnement de la vanne s'effectue en fonction de la section de passage au niveau de son clapet (réduite sur les XGS, sensiblement égale à la section d'entrée sur les XG), et de la vitesse de passage de l'eau ou du débit (Q = V x S).
- La vanne Hydrobloc Premium est une vanne à soupape, sa section de passage est égale à la circonférence du siège multipliée par la hauteur d'ouverture du clapet.
- Entre 15 et 75 % d'ouverture, le fonctionnement de la vanne est optimal dans les conditions normales d'utilisation.
- En dessous de 15 %, la qualité de la régulation reste excellente, notamment grâce au dispositif SPD, mais la vanne est soumise à un régime de fonctionnement sévère qui peut induire des vibrations et du bruit. L'appareil est probablement surdimensionné.
- Au-dessus de 75 % d'ouverture, la régulation est moins performante car la différentielle de pression devient très faible. L'appareil est lent à réagir, il est probablement sous dimensionné. Cependant, cette plage est utilisable en mode "tout ou rien", comme par exemple pour des applications de remplissage de réservoirs.

4- PLAGE DE REGLAGE DU RESSORT:

Le pilote de réduction de pression 51P offre plusieurs plages de réglages:

- Standard: 1 à 16 bar
- Option 1: 0.3 à 2 bar (pour un by-pass de réservoir par exemple)
- Option 2: 15 à 25 bar (autres plages: nous consulter)

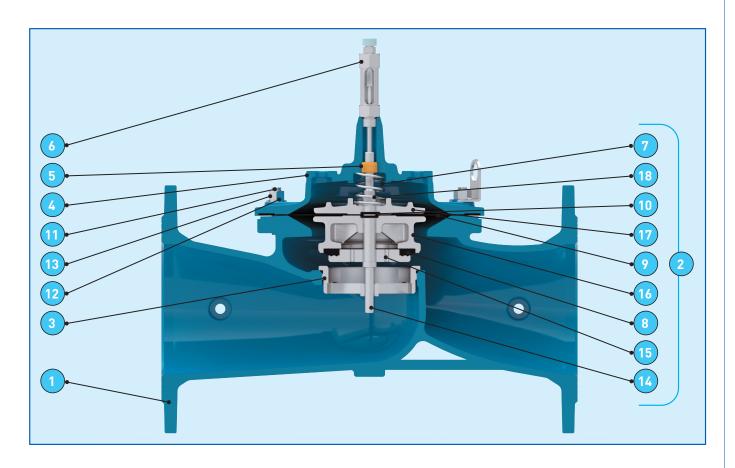

NB: il est possible de modifier la plage in-situ sans changer la vanne de régulation ou le pilote. Seul le ressort du pilote est remplacé en démontant simplement le chapeau du pilote!

DIMENSIONS

VANNE DE BASE TYPE XGS

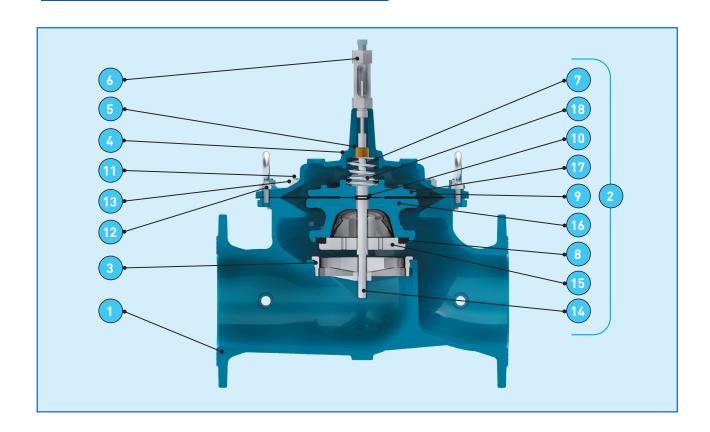
PASSAGE RÉDUIT

DN	A (mm)	B (mm)	C (mm)	D (mm)	Poids* (kg)
40/50	230	145	195	80	10.2
65	290	173	237	95	15
80	310	198	257	102	21
100	350	226	277	112	27
125	400	265	312	127	34
150	480	265	376	145	37
200	600	351	431	172	68
250	730	436	521	205	125
300	850	524	647	232	200
350	980	606	657	278	248
400	1100	606	714	290	269

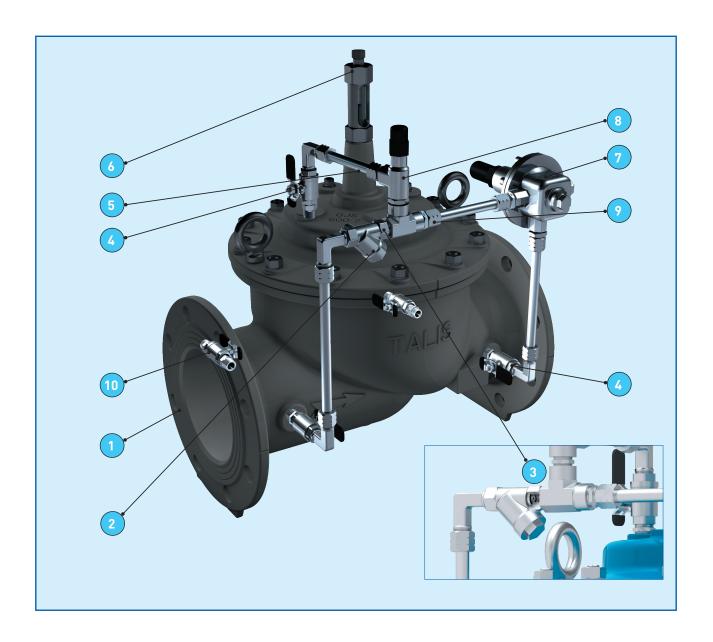

VANNE DE BASE TYPE XG

PASSAGE INTÉGRAL

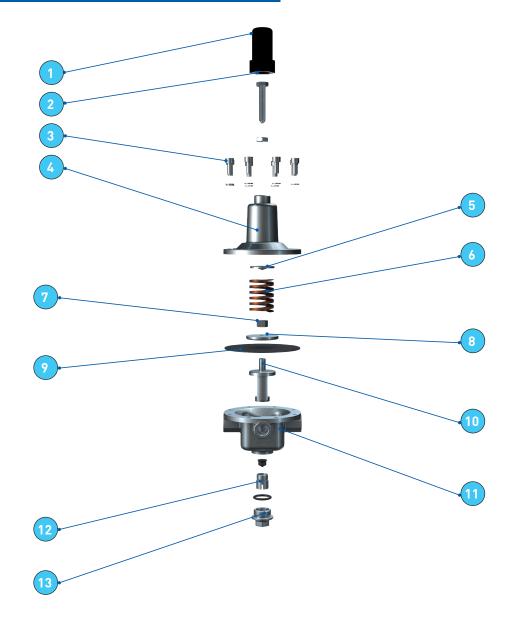
DN	A (mm)	B (mm)	C (mm)	D (mm)	Poids* (kg)
40/50	230	173	237	85	14
65	290	198	257	95	19
80	310	226	277	102	23
100	350	265	312	112	32
125	400	307	376	127	50
150	480	351	431	145	68
200	600	436	521	172	125
250	730	524	647	205	200
300	850	606	697	232	260


^{*}Poids vanne nue

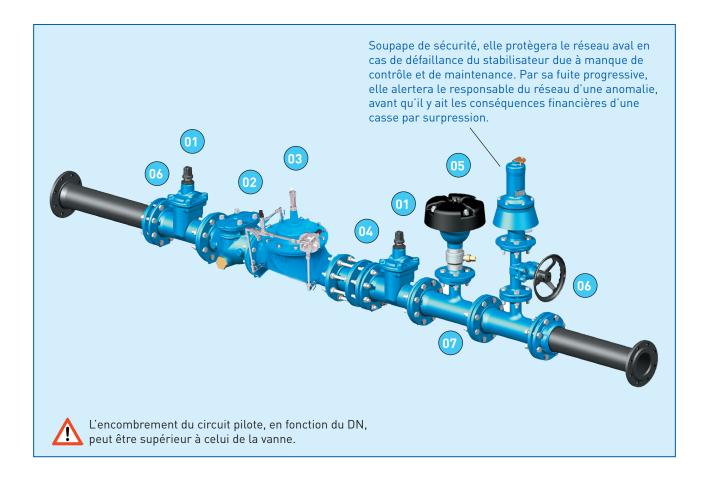
NOMENCLATURE DE L'HYDROBLOC PREMIUM: XGS [DN50-200MM] ET XG [DN50-150MM]


Rep	Désignation	Туре	Nom	Numéro	Norme
1	CORPS	FONTE	EN-GJS-500-7	5.3200	EN 1563
2	EQUIPAGE MOBILE Rep.14-	15-16-8-17-18			1
3	SIEGE	INOX	GX5CrNiMo19-11-2	1.4408	EN 10213-4
4	CHAPEAU	FONTE	EN-GJS-500-7	5.3200	EN 1563
5	GUIDE	LAITON	CuZn21Si3P (CR)	CW724R	EN 12164
6	INDICATEUR	INOX	X5CrNiMo17-12-2 (AISI 316)	1.4401	EN 10088
7	RESSORT	INOX	X5CrNiMo17-12-2	1.4401	EN 10088
8	CLAPET	ELASTOMERE	EPDM		ISO 1629
9	MEMBRANE	ELASTOMERE	EPDM		ISO 1629
10	JOINTS TORIQUES	ELASTOMERE	EPDM		ISO 1629
11	GOUJON	INOX	A2		ISO 3506
12	RONDELLE	INOX	A2		ISO 3506
13	ECROU	INOX	A4		ISO 3506
14	AXE	INOX	X5CrNiMo17-12-2 (AISI 316)	1.4401	EN 10088
15	SERRE CLAPET	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
16	PORTE CLAPET	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
17	SERRE MEMBRANE	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
18	ECROU	INOX	A2		ISO 3506

NOMENCLATURE DE L'HYDROBLOC PREMIUM: XGS[DN250-400MM] ET XG [DN200-300MM]


rep	Désignation	Туре	Nom	Numéro	Norme
1	CORPS	FONTE	EN-GJS-500-7	5.3200	EN 1563
2	EQUIPAGE MOBILE Rep.	14-15-16-8-17-18			
3	SIEGE	INOX	GX5CrNiMo19-11-2	1.4408	EN 10213-4
4	CHAPEAU	FONTE	EN-GJS-500-7	5.3200	EN 1563
5	GUIDE	LAITON	CuZn21Si3P (CR)	CW724R	EN 12164
6	INDICATEUR	INOX	X5CrNiMo17-12-2 (AISI 316)	1.4401	EN 10088
7	RESSORT	INOX	X5CrNiMo17-12-2	1.4401	EN 10088
8	CLAPET	ELASTOMERE	EPDM		ISO 1629
9	MEMBRANE	ELASTOMERE	EPDM		ISO 1629
10	JOINTS TORIQUES	ELASTOMERE	EPDM		ISO 1629
11	GOUJON	INOX	A2		ISO 3506
12	RONDELLE	INOX	A2		ISO 3506
13	ECROU	INOX	A4		ISO 3506
14	AXE	INOX	X5CrNiMo17-12-2	1.4401	EN 10088
15	SERRE CLAPET	INOX	GX5CrNiMo19-11-2	1.4408	EN 10213-4
16	PORTE CLAPET	FONTE	EN-GJS-500-7	5.3200	EN 1563
17	SERRE MEMBRANE	FONTE	EN-GJS-500-7	5.3200	EN 1563
18	ECROU	INOX	A2		ISO 3506

NOMENCLATURE DU CIRCUIT PILOTE AVAL


Rep.	Désignation	Nb	Туре	Nom	Numéro	Norme
01	Vanne de base	1	-	Voir détail pages 15-16		
02	Filtre à tamis G 3/8	1	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
03	Diaphragme dans la croix de liaison 09	1	INOX	X2CrNiMo17-12-2 (AISI 316L)	1.4408	EN 10088
04	Robinet à boule FF G 3/8	3	CUPRO / INOX	-	-	
05	Kit raccords tubes	1	INOX	X2CrNiMo17-12-2 (AISI 316L)	1.4408	EN 10088
06	Indicateur de position	1	INOX /verre	X5CrNiMo17-12-2 (AISI 316)	1.4401	EN 10088
07	Pilote aval type 51P	1	-	Voir détail page 18	-	-
08	Ralentisseur d'ouverture RO	1	INOX	-	-	-
09	Croix de liaison	1	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
10	Robinet porte-manomètre G 3/8 et G 1/4	2	CUPRO / INOX	-	-	

NOMENCLATURE DU PILOTE AVAL TYPE 51P

Rep.	Désignation	Nb	Туре	Nom	Numéro	Norme
01	Capuchon de protection	1	PLASTIQUE	ABS	-	-
02	Vis de tarage du pilote + con- tre-écrou	1	INOX	A4	-	ISO 3506
03	Vis CHc	8	INOX	A4	-	ISO 3506
04	Chapeau du pilote	1	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
05	Plaque d'appui de la vis de tarage	1	INOX	X5CrNiMo17-12-2 (AISI 316)	1.4401	EN 10088
06	Ressort 1 à 16 bar	1	ACIER	SW0SC-V	-	JIS G3561
	Ressort 0.3 à 2 bar (option)	1	INOX	X10CrNi18-8 (AISI 302)	1.4310	EN 10088
	Ressort 15 à 25 bar (option)	1	Nous consulter	-	-	-
07	Ecrou serre membrane	1	INOX	A4	-	ISO 3506
08	Flasque	1	INOX	X5CrNiMo17-12-2 (AISI 316)	1.4401	EN 10088
09	Membrane du pilote	1	ELASTOMERE TOILE	EPDM	-	ISO 1629
10	Porte clapet	1	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
11	Corps du pilote	1	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4
12	Clapet	1+1	EPDM + INOX	-	-	ISO 1629
13	Bouchon - butée guide du pilote	1	INOX	GX5CrNiMo19-11-2 (CF8M)	1.4408	EN 10213-4

RECOMMANDATIONS DE POSE:

VOTRE CHOIX POUR LE CONTROLE DE L'EAU

TALIS est toujours le meilleur choix en matière de transport et de gestion des eaux. Notre société apporte la solution la mieux adaptée pour la gestion de l'eau et de l'énergie, ainsi que pour des applications industrielles ou municipales. Avec une gamme complète de plus de 20 000 produits, nous proposons des solutions globales pour chaque phase du cycle de l'eau : pompage, distribution, connections, ... L'expérience, la technologie novatrice, l'expertise totale et spécifique constituent notre base pour le développement de solutions durables et une gestion optimisée de la ressource vitale... l'eau.

BAYARD

ZI - 4 avenue Lionel Terray CS 70047 69881 Meyzieu cedex France

TÉL. +33 (0) 4 37 44 24 24 FAX +33 (0) 4 37 44 24 25

SITE www.bayard.fr

